Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Environ Res Public Health ; 20(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2232597

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread across the globe since the end of 2019, posing significant challenges for global medical facilities and human health. Treatment of hospital wastewater is vitally important under this special circumstance. However, there is a shortage of studies on the sustainable wastewater treatment processes utilized by hospitals. Based on a review of the research trends regarding hospital wastewater treatment in the past three years of the COVID-19 outbreak, this review overviews the existing hospital wastewater treatment processes. It is clear that activated sludge processes (ASPs) and the use of membrane bioreactors (MBRs) are the major and effective treatment techniques applied to hospital wastewater. Advanced technology (such as Fenton oxidation, electrocoagulation, etc.) has also achieved good results, but the use of such technology remains small scale for the moment and poses some side effects, including increased cost. More interestingly, this review reveals the increased use of constructed wetlands (CWs) as an eco-solution for hospital wastewater treatment and then focuses in slightly more detail on examining the roles and mechanisms of CWs' components with respect to purifying hospital wastewater and compares their removal efficiency with other treatment processes. It is believed that a multi-stage CW system with various intensifications or CWs incorporated with other treatment processes constitute an effective, sustainable solution for hospital wastewater treatment in order to cope with the post-pandemic era.


Subject(s)
COVID-19 , Water Purification , Humans , Wastewater , Waste Disposal, Fluid/methods , Pandemics , SARS-CoV-2 , Hospitals , Water Purification/methods , Wetlands
2.
Sci Total Environ ; 862: 160711, 2023 Mar 01.
Article in English | MEDLINE | ID: covidwho-2150570

ABSTRACT

The large-scale global COVID-19 has a profound impact on human society. Timely and effectively blocking the virus spread is the key to controlling the pandemic growth. Ozone-based inactivation and disinfection techniques have been shown to effectively kill SARS-CoV-2 in water, aerosols and on solid surface. However, the lack of an unified information and discussion on ozone-based inactivation and disinfection in current and previous pandemics and the absence of consensus on the main mechanisms by which ozone-based inactivation of pandemic causing viruses have hindered the possibility of establishing a common basis for identifying best practices in the utilization of ozone technology. This article reviews the research status of ozone (O3) disinfection on pandemic viruses (especially SARS-CoV-2). Taking sterilization kinetics as the starting point while followed by distinguishing the pandemic viruses by enveloped and non-enveloped viruses, this review focuses on analyzing the scope of application of the sterilization model and the influencing factors from the experimental studies and data induction. It is expected that the review could provide an useful reference for the safe and effective O3 utilization of SARS-CoV-2 inactivation in the post-pandemic era.


Subject(s)
COVID-19 , Ozone , Viruses , Humans , Disinfection/methods , Ozone/pharmacology , Pandemics/prevention & control , COVID-19/prevention & control , SARS-CoV-2
3.
J Environ Chem Eng ; 9(4): 105357, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1135442

ABSTRACT

There are overwhelming increases of studies and over 200,000 publications related to all the aspects of COVID-19. Among them, 262 papers were published by authors from 67 countries regarding COVID-19 with water science and technology. Although the transmission routes of SARS-CoV-2 in water cycle have not been proved, the water and wastewater play an important role in the control of COVID-19 pandemic. Accordingly, it is scholarly relevant and interesting to look into publications of COVID-19 in water science and technology to track the investigations for moving forward in the years to come. It is believed that, through the literature survey, the question on what we know and what we do not know about COVID-19 so far can be clear, thus providing useful information for helping curbing the epidemic from water sector. This forms the basis of the current study. As such, a bibliometric analysis was conducted. It reveals that wastewater-based epidemiology (WBE) has recently gained global attention with the source and survival characteristics of coronavirus in the aquatic environment; the methodology of virus detection; the water hygiene; and the impact of the COVID-19 pandemic on the water ecosystem being the main topics in 2020. Various studies have shown that drinking water is safety whereas wastewater may be a potential risk during this pandemic. From the perspective of the water cycle, the scopes for further research needs are discussed and proposed, which could enhance the important role and value of water science in warning, monitoring, and predicting COVID-19 during epidemic outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL